3.85 \(\int \frac{\sqrt{c+d x^2}}{(a+b x^2) (e+f x^2)^{3/2}} \, dx\)

Optimal. Leaf size=209 \[ \frac{b c^{3/2} \sqrt{e+f x^2} \Pi \left (1-\frac{b c}{a d};\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{c f}{d e}\right )}{a \sqrt{d} e \sqrt{c+d x^2} (b e-a f) \sqrt{\frac{c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}}-\frac{\sqrt{f} \sqrt{c+d x^2} E\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{\sqrt{e} \sqrt{e+f x^2} (b e-a f) \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}} \]

[Out]

-((Sqrt[f]*Sqrt[c + d*x^2]*EllipticE[ArcTan[(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(Sqrt[e]*(b*e - a*f)*Sqrt[
(e*(c + d*x^2))/(c*(e + f*x^2))]*Sqrt[e + f*x^2])) + (b*c^(3/2)*Sqrt[e + f*x^2]*EllipticPi[1 - (b*c)/(a*d), Ar
cTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (c*f)/(d*e)])/(a*Sqrt[d]*e*(b*e - a*f)*Sqrt[c + d*x^2]*Sqrt[(c*(e + f*x^2))/(e*
(c + d*x^2))])

________________________________________________________________________________________

Rubi [A]  time = 0.105284, antiderivative size = 209, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 3, integrand size = 32, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.094, Rules used = {541, 539, 411} \[ \frac{b c^{3/2} \sqrt{e+f x^2} \Pi \left (1-\frac{b c}{a d};\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{c f}{d e}\right )}{a \sqrt{d} e \sqrt{c+d x^2} (b e-a f) \sqrt{\frac{c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}}-\frac{\sqrt{f} \sqrt{c+d x^2} E\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{\sqrt{e} \sqrt{e+f x^2} (b e-a f) \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[c + d*x^2]/((a + b*x^2)*(e + f*x^2)^(3/2)),x]

[Out]

-((Sqrt[f]*Sqrt[c + d*x^2]*EllipticE[ArcTan[(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(Sqrt[e]*(b*e - a*f)*Sqrt[
(e*(c + d*x^2))/(c*(e + f*x^2))]*Sqrt[e + f*x^2])) + (b*c^(3/2)*Sqrt[e + f*x^2]*EllipticPi[1 - (b*c)/(a*d), Ar
cTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (c*f)/(d*e)])/(a*Sqrt[d]*e*(b*e - a*f)*Sqrt[c + d*x^2]*Sqrt[(c*(e + f*x^2))/(e*
(c + d*x^2))])

Rule 541

Int[Sqrt[(e_) + (f_.)*(x_)^2]/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)^(3/2)), x_Symbol] :> Dist[b/(b*c -
a*d), Int[Sqrt[e + f*x^2]/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] - Dist[d/(b*c - a*d), Int[Sqrt[e + f*x^2]/(c +
 d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[d/c] && PosQ[f/e]

Rule 539

Int[Sqrt[(c_) + (d_.)*(x_)^2]/(((a_) + (b_.)*(x_)^2)*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(c*Sqrt[e +
 f*x^2]*EllipticPi[1 - (b*c)/(a*d), ArcTan[Rt[d/c, 2]*x], 1 - (c*f)/(d*e)])/(a*e*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sq
rt[(c*(e + f*x^2))/(e*(c + d*x^2))]), x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[d/c]

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rubi steps

\begin{align*} \int \frac{\sqrt{c+d x^2}}{\left (a+b x^2\right ) \left (e+f x^2\right )^{3/2}} \, dx &=\frac{b \int \frac{\sqrt{c+d x^2}}{\left (a+b x^2\right ) \sqrt{e+f x^2}} \, dx}{b e-a f}-\frac{f \int \frac{\sqrt{c+d x^2}}{\left (e+f x^2\right )^{3/2}} \, dx}{b e-a f}\\ &=-\frac{\sqrt{f} \sqrt{c+d x^2} E\left (\tan ^{-1}\left (\frac{\sqrt{f} x}{\sqrt{e}}\right )|1-\frac{d e}{c f}\right )}{\sqrt{e} (b e-a f) \sqrt{\frac{e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt{e+f x^2}}+\frac{b c^{3/2} \sqrt{e+f x^2} \Pi \left (1-\frac{b c}{a d};\tan ^{-1}\left (\frac{\sqrt{d} x}{\sqrt{c}}\right )|1-\frac{c f}{d e}\right )}{a \sqrt{d} e (b e-a f) \sqrt{c+d x^2} \sqrt{\frac{c \left (e+f x^2\right )}{e \left (c+d x^2\right )}}}\\ \end{align*}

Mathematica [C]  time = 0.466349, size = 207, normalized size = 0.99 \[ \frac{-i e \sqrt{\frac{d x^2}{c}+1} \sqrt{\frac{f x^2}{e}+1} (b c-a d) \Pi \left (\frac{b c}{a d};i \sinh ^{-1}\left (\sqrt{\frac{d}{c}} x\right )|\frac{c f}{d e}\right )-i a d e \sqrt{\frac{d x^2}{c}+1} \sqrt{\frac{f x^2}{e}+1} E\left (i \sinh ^{-1}\left (\sqrt{\frac{d}{c}} x\right )|\frac{c f}{d e}\right )-a f x \sqrt{\frac{d}{c}} \left (c+d x^2\right )}{a e \sqrt{\frac{d}{c}} \sqrt{c+d x^2} \sqrt{e+f x^2} (b e-a f)} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[c + d*x^2]/((a + b*x^2)*(e + f*x^2)^(3/2)),x]

[Out]

(-(a*Sqrt[d/c]*f*x*(c + d*x^2)) - I*a*d*e*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*EllipticE[I*ArcSinh[Sqrt[d/c
]*x], (c*f)/(d*e)] - I*(b*c - a*d)*e*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*EllipticPi[(b*c)/(a*d), I*ArcSinh
[Sqrt[d/c]*x], (c*f)/(d*e)])/(a*Sqrt[d/c]*e*(b*e - a*f)*Sqrt[c + d*x^2]*Sqrt[e + f*x^2])

________________________________________________________________________________________

Maple [A]  time = 0.025, size = 285, normalized size = 1.4 \begin{align*}{\frac{1}{ae \left ( af-be \right ) \left ( df{x}^{4}+cf{x}^{2}+de{x}^{2}+ce \right ) } \left ({x}^{3}adf\sqrt{-{\frac{d}{c}}}-{\it EllipticE} \left ( x\sqrt{-{\frac{d}{c}}},\sqrt{{\frac{cf}{de}}} \right ) ade\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}+{\it EllipticPi} \left ( x\sqrt{-{\frac{d}{c}}},{\frac{bc}{ad}},{\sqrt{-{\frac{f}{e}}}{\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \right ) ade\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}-{\it EllipticPi} \left ( x\sqrt{-{\frac{d}{c}}},{\frac{bc}{ad}},{\sqrt{-{\frac{f}{e}}}{\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \right ) bce\sqrt{{\frac{d{x}^{2}+c}{c}}}\sqrt{{\frac{f{x}^{2}+e}{e}}}+xacf\sqrt{-{\frac{d}{c}}} \right ) \sqrt{f{x}^{2}+e}\sqrt{d{x}^{2}+c}{\frac{1}{\sqrt{-{\frac{d}{c}}}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*x^2+c)^(1/2)/(b*x^2+a)/(f*x^2+e)^(3/2),x)

[Out]

(x^3*a*d*f*(-d/c)^(1/2)-EllipticE(x*(-d/c)^(1/2),(c*f/d/e)^(1/2))*a*d*e*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2
)+EllipticPi(x*(-d/c)^(1/2),b*c/a/d,(-f/e)^(1/2)/(-d/c)^(1/2))*a*d*e*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)-E
llipticPi(x*(-d/c)^(1/2),b*c/a/d,(-f/e)^(1/2)/(-d/c)^(1/2))*b*c*e*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)+x*a*
c*f*(-d/c)^(1/2))*(f*x^2+e)^(1/2)*(d*x^2+c)^(1/2)/e/a/(-d/c)^(1/2)/(a*f-b*e)/(d*f*x^4+c*f*x^2+d*e*x^2+c*e)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{d x^{2} + c}}{{\left (b x^{2} + a\right )}{\left (f x^{2} + e\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(1/2)/(b*x^2+a)/(f*x^2+e)^(3/2),x, algorithm="maxima")

[Out]

integrate(sqrt(d*x^2 + c)/((b*x^2 + a)*(f*x^2 + e)^(3/2)), x)

________________________________________________________________________________________

Fricas [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(1/2)/(b*x^2+a)/(f*x^2+e)^(3/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{c + d x^{2}}}{\left (a + b x^{2}\right ) \left (e + f x^{2}\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x**2+c)**(1/2)/(b*x**2+a)/(f*x**2+e)**(3/2),x)

[Out]

Integral(sqrt(c + d*x**2)/((a + b*x**2)*(e + f*x**2)**(3/2)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sqrt{d x^{2} + c}}{{\left (b x^{2} + a\right )}{\left (f x^{2} + e\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*x^2+c)^(1/2)/(b*x^2+a)/(f*x^2+e)^(3/2),x, algorithm="giac")

[Out]

integrate(sqrt(d*x^2 + c)/((b*x^2 + a)*(f*x^2 + e)^(3/2)), x)